
SST + gem5 = A Scalable Simulation Infrastructure for
High Performance Computing

Mingyu Hsieh
Sandia National Labs P.O.Box

5800
Albuquerque, NM

myhsieh@sandia.gov

Jie Meng
Boston University

College of Engineering
Boston, MA

jiemeng@bu.edu

Michael Levenhagen
Sandia National Labs

P.O.Box 5800
Albuquerque, NM

mjleven@sandia.gov
Kevin Pedretti

Sandia National Labs
P.O.Box 5800

Albuquerque, NM
ktpedre@sandia.gov

Ayse Coskun
Boston University

College of Engineering
Boston, MA

acoskun@bu.edu

Arun Rodrigues
Sandia National Labs

P.O.Box 5800
Albuquerque, NM

afrodri@sandia.gov

ABSTRACT
High Performance Computing (HPC) faces new challenges in
scalability, performance, reliability, and power consumption.
Solving these challenges will require radically new hardware
and software approaches. It is impractical to explore this
vast design space without detailed system-level simulations
at some scale. However, most of the existing simulators are
either not sufficiently detailed, not scalable, or cannot eval-
uate key system characteristics such as energy consumption
or reliability.

To address this problem, we integrate the highly detailed
gem5 simulator into the parallel Structural Simulation Toolkit
(SST). We add the fast-forward capability in the SST/gem5
and ported the lightweight Kitten operating system on gem5.
In addition, we improve the reliability model in SST with
more comprehensive analysis of system reliability. Utiliz-
ing the simulation framework, we evaluate the impact of
two energy-efficient resource-conscious scheduling policies
on system reliability. Results show that the effectiveness
of scheduling policies differ according to the composition of
workload and system topology.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids—Simulation

General Terms
Performance, Reliability

Keywords
Simulation, Architecture

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIMUTools 2012 March 19–23, Desenzano, Italy.
Copyright 2012 ICST, ISBN .

1. INTRODUCTION
As HPC continues to push the bounds of computation, it

faces new challenges in scalability, performance, reliability,
and power consumption. To address these challenges, we
need to design new architectures, operating systems, pro-
gramming models, and software. It is impractical to explore
this vast design space without detailed system-level simula-
tions at some scale. However, most simulators are either not
sufficiently detailed (often glossing over important details in
processor, memory, or network implementations), not scal-
able (often trying to simulate highly parallel architectures
with serial simulators), or not able to evaluate key system
characteristics (such as energy consumption or reliability).

To address this problem, we have integrated the highly
detailed gem51 simulator into the parallel Structural Simu-
lation Toolkit (SST) [11]. We extend the gem5 simulator
by adding fast-forwarding capabilities, porting the HPC-
oriented Kitten operating system [8], and adding reliability
analysis capabilities. Experimental results show the bene-
fits gained from the combination of gem5, SST and Kitten.
Specifically, this paper makes the following contributions:

• We creat a useful new tool for exploring key issues in HPC,
by leveraging the combined capabilities of gem5 (strong
processor models, detailed and flexible cache models, and
a full-system simulation capacity) and SST (has a rich
set of HPC-oriented architecture components, is scalable
parallel simulation, and has the ability to analyze power
and reliability).

• We add the fast-forward facility in the simulation frame-
work, enabling multiple levels of granularity for the same
component in the same simulation.

• We integrate the lightweight Kitten operating system with
gem5, enabling more rapid evaluation of system software
and run-time ideas.

• We extend the reliability model of SST, enabling SST to
analyze system reliability more comprehensively. Utiliz-
ing the integrated simulation framework, we evaluate the
impact of two resource-conscious scheduling policies on
system reliability.

1http://gem5.org/Main Page/



The rest of the paper starts with the background and re-
lated work. Section 3 describes the integration of SST and
gem5. Several improvements to the simulation framework
are described in Section 4. Section 5 demonstrates the eval-
uation results and is followed by the conclusion.

2. BACKGROUND

2.1 SST
The Structural Simulation Toolkit (SST) [11] is an open-

source, multi-scale, and parallel architectural simulator aimed
at the design and evaluation of HPC systems. The core
of SST utilizes a component-based event simulation model
built on top of MPI for efficient parallel simulations. The
hardware devices, such as processors, are modeled as com-
ponents in SST. The component-based modular interface of
SST enables the integration of existing simulators (such as
gem5) into a scalable simulation framework. The SST has
been validated with two real systems [7]. The SST tends to
include existing simulation models as is, and to validate the
SST, the simulation models themselves need to be accurate.
For example, the gem5 has been validated with real systems
with about 10% error.

The SST’s main multi-core processor model, genericproc,
is descended from the SimpleScalar [4]. It couples multiple
copies of the sim-out-order pipeline model with a front-end
emulation engine executing the PowerPC ISA. In addition
to the functionalities SimpleScalar provides, genericproc

has a cache coherency model, a prefetcher, and a refactored
memory model that can be connected with more accurate
memory models, such as DRAMSim2 [12]. However, it has
limitations, such as it adopts a simple cache coherency pro-
tocal and its memory hierarchy is not configurable. This
drives the need for a more detailed and extensive processor
model in SST.

2.2 gem5
The gem5 simulator is an event-driven performance simu-

lation framework for computer system architecture research.
It models major structural simulation components (such as
CPUs, buses, and caches) as objects, and supports perfor-
mance simulations in both full-system and syscall-emulation
modes. The full-system mode simulates a complete com-
puter system including operating system kernel and I/O
devices, while syscall-emulation mode simulates statically
compiled binaries by functionally emulating necessary sys-
tem calls. The memory subsystem in the gem5 models
inclusive/exclusive cache hierarchies with various replace-
ment policies, coherence protocol implementations, DMA,
and memory controllers.

2.3 Related Work
There has been a number of tools in the area of computer

architectural performance and power modeling. For exam-
ple, SimpleScalar [4] is extended with several power models,
such as Wattch [3], for examining trade-offs of performance
and power. However, it runs only user-mode single-threaded
workloads and cannot simulate multiple processor cores. Re-
cently, Lis et al. present HORNET, a parallel manycore
simulator with power and thermal modeling [9]. However,
it does not have a modular design to allow integration of
other architectural models not shipped with the package.
Moreover, it uses ORION [2] for power estimation which

only provides power modeling for network components. The
modular design of SST eases integration of existing simula-
tors to interact with each other in a parallel, scalable, and
open-source framework.

3. INTEGRATION OF SST AND GEM5
In this section, we provide the details of the integration

of gem5 and SST. The integration requires synchronizing
gem5’s clock with SST’s, working around synchronous mes-
sages, and allowing communication with other SST compo-
nents. We test the integration with two examples: (1) with
a Portals 4 [10] offload NIC and router; (2) with an external
memory model DRAMSimII [12].

3.1 System Emulation Mode Integration
Figure 1 shows a high level view of how gem5 is encapsu-

lated as an SST component. On each rank, all gem5 SimOb-

jects live inside an sst::component. The gem5 event queue
is modified so that it is driven by the SST event queue. The
gem5 is triggered by an SST clock event and the gem5 event
queue delivers events which is scheduled to arrive at that
cycle. It then stop and return control back to SST until the
next clock interval.

There are some changes to the initialization as well. The
gem5 traditionally uses Python to dynamically build the
simulation. However, Python is not available on some large
HPC systems. In addition, SST’s uses a two-stage initial-
ization process (components are partitioned before they are
constructed), which is not compatible with gem5’s initializa-
tion method. Thus, we repackage gem5 as a static library
and then directly call the SimObject constructors. Configu-
ration is controlled by an XML schema.

3.1.1 Working Around Synchronous Messages
One key difference between gem5’s ports and SST’s links

is that ports have an synchronous interface, which allows
instant untimed communication between two SimObjects.
This convenience is used for some “backdoor” operations
such as system calls, loading binaries into memory, and for
debugging. It is enabled by the fact that gem5 is a serial
simulator where all SimObjects exist in the same address
space. SST does not allow the same convenience, as the
greater scalability of MPI comes at the cost of a distributed
memory model.

SST::Component

gem5

SimObject

SimObject

SimObject

Port

Port

gem5 
Queue

SST::Component SST::Component

SST::Link SST::Link

SST Queue

SST::Component

Figure 1: Gem5 encapsulated as an sst::component



gem5 SST Component
CPU

L1 L1

BUS

L2

IO 
Bridge

PhysMem

IO Bus

Syscall 
Handler

Translator

Portals 
NICSS Router

MemBus+
Memory 

BUS
DRAMSim

Figure 2: Translation and assistance objects to in-
terface gem5 with SST and allow parallel operation

For system calls, the system emulation mode of gem5 uses
synchronous access to the physical memory to copy data di-
rectly to/from the processor, which envokes the host OS
to emulate the call. For example, in a write() call the
processor directly accesses the buffer in the main memory
SimObject and pass that to the host OS. To avoid the syn-
chronous call, we add a system call handler SimObject All
system calls are transformed into memory mapped requests
to an uncached region of memory. These requests are then
directed to the system call handler SimObject, which can is-
sue DMA transactions to copy buffers to/from memory and
then perform the required call to the host OS. This comes
at the cost of having to extend the system call handler for
each system call, but the number which requires emulation
is relatively small for our applications.

Another use of synchronous messages is to perform the ini-
tial loading of the binary into main memory. Normally, the
gem5 processor directly accesses the main memory object.
For the integrated SST/gem5, we instead tell the memory
object (which may reside outside of the gem5 component)
to load the data directly. The gem5 cpu object then only
loads the initial thread state from the binary.

3.1.2 SST/gem5 Translators
The integrated gem5 must be able to interact with other

components in SST. This requires that new simObjects be
added to gem5 which are aware of SST and able to com-
municate over sst links (see Figure 2). The first exam-
ple of this connects gem5 to DRAMSim II−−a very robust
and highly validated DRAM memory model. To support
this, a new simObject is created which inherites from the
gem5 memory bus. This new object, memBusPlus, replaces
the default memory bus, and would pass incoming memory
requests through an SST link to the DRAMSim compo-

nent. DRAMSim is modified to include a backing store of
data (by default DRAMSim only provides timing, not actual
storage), allowing it to replace the gem5 physical memory
model. DRAMSim is also modified to load the application
binary into its backing store, as mentioned in Section 3.1.1.

To perform larger HPC network experiments, gem5 is also
interfaced with models of an HPC network. The SST con-
tains models of a high performance protocol offload NIC
which uses the Portals network API. This Portals NIC can
connect to a cycle-accurate model of an HPC 3D torus router,
based on the Red Storm SeaStar network [15]. This setup

allows a detailed processor and cache model (gem5) to be
connected to a detailed HPC NIC model (Portals NIC) and
a detailed HPC router model (the SeaStar router).

Integrating the Portals/SeaStar models with gem5 starts
with creating a translator simObject inside of gem5. This
object is designed as a memory-mapped device within gem5
and can be accessed by writing in to a reserved uncached
part of the address space from the gem5 CPU model. The
memory bus and IO bridge diverts accesses to this address
space to the translator object which would buffer them until
a mailbox address was written to. When this occurrs, the
buffered data would be assembled into a Portals message
and this message would be transferred over an SST link

to the Portals NIC component. The Portals NIC could also
send events to the translator object to notify the processor
of incoming messages or to start DMA transfers to or from
memory. Because communication between SST components

(such as the Portals NIC and the SeaStar router) can be
serialized and passed between ranks of SST, the combina-
tion of gem5, the Portals NIC, and the SeaStar router allow
detailed exploration of HPC network protocols and param-
eters in parallel. Experiments (See Section 3.3) show that
running this configuration in the SST’s parallel simulation
environment achieves significant simulation speedup.

3.2 Full System Mode (gem5_FS) Integration
Running the gem5 full system model is similar to running

the system emulation model except that the gem5 FS ad-
ditionally needs to load a Linux kernel, and mounts one or
more disk images for its filesystems. The disk image should
contain the application binaries that one wants to run. The
path to the kernel image and the disk image need to be set up
when configuring gem5 FS. Integrating the gem5 FS with
SST is similar to integrating the system emulation mode
described in previous sections. For example, the simOb-

jects that were created and inherited from the gem5 in-
order CPUs, out-of-order (O3) CPUs, caches, and physical
memory are kept the same. On the other hand, the interface
for gem5 FS and SST integration no longer needs the work-
load simObject (the application that is assigned to a core in
system emulation mode) and are added several simObjects
for full system components, such as interrupts. The path
to the system files (kernel and disk images) is configured by
the SST’s System Description Language (SDL). Because the
full system mode does not require synchronous messages for
system calls, integrating full system mode does not require
some additional handler objects.

3.3 Effectiveness of Parallelism of SST/gem5
To test the effectiveness of parallelism of SST/gem5, we

conduct experiments combined the gem5 O3 processor model
(Alpha ISA) with the Portals NIC and the SeaStar router
models described in Section 3.1.2. The gem5 was run in
system emulation mode and with only a single core per
simulated rank. Our test machine was a small 4-socket
32-core x86 machine running Redhat Enterprise Linux 5
and OpenMPI 1.4.3. Though this is a shared memory ma-
chine, the SST can run over distributed memory machines
as well. In these experiments, the processors were running
the miniGhost compact application from the Mantevo Suite
[1]. MiniGhost performs a simple 3D multi-point stencil
computation on a regular grid.

We compare the execution time of running the simulation



Table 1: Speedup from parallel simulation

Number of host ranks Execution time (s)
1 24869
32 578

with 128 nodes in serial with running the simulation on 32
host ranks. Our results demonstrate the gem5 benefits from
the parallel simulation which results in a speeup of 43x (Ta-
ble 1). Though these results are only for small systems, the
ability to run even a hundred gem5 cores in a single scalable
simulation with a realistic HPC network represents a signif-
icant increase in what was previously possible with gem5.
Also, because each gem5 component can be configured with
multiple cores, even a 128 node simulation could be a sim-
ulation of several thousand cores, which put it well into the
range of encountering interesting HPC effects.

3.4 Kitten on gem5 Integration
Kitten is an open-source, lightweight kernel designed to

operate as the compute node operating system on distributed
memory supercomputers. 2 We integrate Kitten with gem5
for two main technical reasons. First, the simpler code-base
compared to a full Linux system enables more rapid pro-
totyping and evaluation of new system software and run-
time ideas. Second, lightweight kernels in general can en-
able faster and more reproducible simulation compared to
a Linux system. For example, the authors of [5] point out
that CNK, a lightweight kernel for PowerPC with similar
design to Kitten, is an essential tool for chip verification.
A full Linux kernel require days to boot in cycle-accurate
simulator, while CNK require only a couple of hours.

Kitten is designed to run on commodity x86 systems,
so the port to the gem5 FS x86 architecture model was
straightforward. Kitten boots identically to Linux, how-
ever the gem5’s boot mechanism does not support sepa-
rate Linux kernel and initramfs files. We modify Kitten to
support embedding its equivalent of an initramfs file in the
Kitten kernel image, resulting in a single file for the gem5
to boot. Two additional minor changes were required: 1)
The gem5 was modified to pass “console=serial,vga” to the
kernel being booted, and 2) the vendor string returned by
the CPUID instruction was modified to return “GenuineIn-
tel”. With these changes, Kitten was able to boot in a gem5
simulation and run user-level processes and threads. Appli-
cations being simulated can use the standard gem5 utility
library identically to how it is used in a Linux simulation.
For example, the application source code can be modified to
call the gem5 library’s exit function when the simulation is
complete, instruct the simulator to dump out performance
statistics, or cause a checkpoint to be taken.

One of the first areas we are exploring are novel power
management schemes. These require low-overhead task mi-
gration mechanisms, as well frequent experimentation with
different task scheduling policies. Such changes are rela-
tively straightforward to implement in the Kitten kernel. As
an example, we implement the V1 optimized core-switching
strategy described in [14] in Kitten in approximately a day
of effort. Since neither the Linux sys gettid() modifications
or gettid() benchmark used in the paper are publicly avail-
able, we re-implement them in Linux 2.6.35.7 so that Kitten
could be compared to Linux. Kitten and Linux 2.36.25.7 re-

2http://code.google.com/p/kitten/

Table 2: Core-switching performance between two
cores in the same processor.

unmodified modified gettid()
gettid() with context-switch

Kitten 44 ns 2630 ns
Linux 2.6.35.7 47 ns 4435 ns
V1 Linux [14] 83 ns 4094 ns

Best Linux [14] 83 ns 2870 ns

sults are from evaluations on an Intel X5570 2.93GHz CPU,
while prior work [14] experiments on an Intel X5160 3.0GHz
CPU. The results of this comparison are shown in Table 2,
where the gettid benchmark performs 1,000,000 iterations
per run. It is interesting to note that Kitten achieves a
speedup of 1.69 compared to Linux running on the same
hardware, which is better than the best speedup of 1.43
achieved in [14]. It is likely Kitten would perform even bet-
ter if the more complex V2 or V3 algorithms from the pa-
per were implemented. In this instance, Kitten is able to
achieve best-in-class performance without having to resort
to lengthy optimization endeavors.

4. EXTENSIONS TO THE SST/GEM5
In this section, we introduce the extensions to the SST/gem5

by adding the fast-forward facility, which enables multiple
levels of granularity for the same component within the same
simulation (Section 4.1). We also extend and improve the
reliability model of SST, which provides a more comprehen-
sive analysis of system reliability (Section 4.2).

4.1 Fast-Forward
To accelerate the simulation speed running real bench-

mark suites, we add the fast-forwarding feature in SST/gem5
to enable the simulations to reach the region of interest
(ROI) at a faster speed. We create a new O3switchCPU ob-
ject, which consists of a simple gem5 in-order CPU object
and a detailed gem5 out-of-order (O3) CPU object. The
gem5 in-order CPU object uses atomic memory access and
is suitable for cases where a detailed model is not necessary.
The gem5 O3 CPU has detailed timing memory access for
running precise simulation. When the O3switchCPU object
is initialized, it first starts the simulation process with the
in-order CPU. After reaching the start point of the ROI, it
switches out the in-order CPU and makes the O3 CPU take
over the process. The number of instructions to fast-forward
and to execute within ROI are configurable in SST’s SDL.

The effectiveness of fast-forwarding is highly dependent
on the system architectural configurations (such as the sys-
tem bus-width, memory access rate, and cache and mem-
ory access latencies), the number of instructions to reach
the ROI, and the benchmark. To evaluate the effective-
ness of fast-forwarding in SST/gem5, we run each of the
eight NAS Parallel Benchmarks (Figure 3) on a single node
with 16 threads. This is to avoid the simulation speedup
owing to fast-forwarding overshadowed by the synchroniza-
tion between processes for workloads running on multiple
nodes. For each benchmark, we fast-forward 50% of the op-
erations and the results show an average increase of 47%
in simulation speed (Figure 3). The largest improvement
is for the most memory-bounded “mg” benchmark, which is
75.90% faster with fast-forwarding than with the standard
O3 CPU model. For the most computationally intensive



cg dc ep is lu mg sp ua average
0

10

20

30

40

50

60

70

80

Benchmarks

%
 S

pe
ed

up

Figure 3: Fast-forward performance improvements

benchmark “cg”, using fast-forwarding could also make sim-
ulation 12.57% faster. In general, benchmarks that have
more memory accesses tend to benefit more by using fast-
forwarding in their simulations.

4.2 Reliability Modelling
To help guide design, program and operate future com-

puters, in [6, 7], we implement the technology interface, the
core of power, temperature and reliability simulation in SST.
In this work, we add a model for another emerging critical
failure mechanism, Negative Bias Temperature Instability
(NBTI). NBTI typically occurs when the input to a gate is
low while the output is high, resulting in an accumulation of
positive charges in the gate oxide. This accumulation causes
the threshold voltage of the transistor to increase and even-
tually leads to processor failure due to timing constraints.
The NBTI model we use is defined in [13] and its failure rate
is given by:

λNBTI = CNBTI [(ln(
A

1 + 2e
B

kT

)−ln(
A

1 + 2e
B

kT

−C))
T

e
−D
kt

]
1
β

(1)
where CNBTI , A, B, C, D, and are fitting parameters. The
values we use are CNBTI = 0.006, A = 1.6328, B = 0.07377,
C = 0.01, D = -0.06852, and β= 0.3.

Our previous reliability model [6] was based on two as-
sumptions which limit the applicability of the model. First,
the model assumed the simulated system is a serial failure
system. Second, the model assumed a constant failure rate
in each failure mechanism. In this work, we address the
two limitations and enable the reliability model to evaluate
structural duplication with consideration of wear-out failure
mechanism.

We implement the Monte Carlo method and the MIN-
MAX analysis [13], which are able to calculate the system-
level reliability of either a serial-parallel failure system or a
serial failure system. Second, we use lognormal distribution
for each failure mechanism, which has been found to better
model wear-out mechanism of semiconductors. In any single
iteration of the Monte-Carlo simulation, Equation (2) is used
to generate a random lifetime from lognormal distribution
for each failure mechanism and structure of the system:

randlognormal = eln(MTTF )−0.125+0.5sin(2πrand1)
√
−2 ln(rand2)

(2)
where randlognormal is a random lognormal distribution

representing a random lifetime for each structure, MTTF
is provided by the reliability model described earlier, and
rand1 and rand2 are two random uniform variables. A
MIN-MAX analysis is performed on these lifetimes based

Table 3: SPEC2006 scenarios used for evaluation of
scheduling policies

Scenario Benchmarks
1 four c
2 three c and one m
3 two c and two m
4 one c and three m
5 four m

on the configuration of the system and gives the system-
level lifetime for that iteration. The MTTF of the system
is calculated by repeating this process over many iterations
(1000 iterations in our study) and averaging the system-level
lifetimes obtained.

5. THE IMPACT OF SCHEDULING POLI-
CIES ON SYSTEM RELIABILITY

5.1 Experimental Setup
We model a duel-socket Intel Xeon processor comprising

eight total cores. Each socket has two chips and each chip
has one L2 cache shared by a pair of cores. When multiple
cores share a resource, the threads running on those cores
can either constructively or destructively use this resource
depending on if the threads share data or not.

We conduct a study on all possible 4-thread workloads
that can be constructed from the 12 representative SPEC2006
benchmarks (memory-bound benchmarks: bzip2, gcc, gobmk,
h264ref, hmmer, omnetpp, mcf; computation-bound bench-
marks: libquantum, namd, specrand fp, specrand int, as-
tar). We choose all four SPEC2006 scenarios listed in Ta-
ble 3, where c and m respectively stand for computation-
bound and memory-bound benchmarks. We compare the
Power DI policy and the vector balancing policy plus the
frequency scaling. The results are shown in Figure 5 and
Figure 6.

5.2 Evaluation
We show the impact of resource contention on system

performance, energy, and reliability in Figure 4. In the
simulation, we consider two thread-to-core mapping scenar-
ios. In Scenario 1, each of the eight cores is assigned with
a memory-bound application (gcc). In the other scenario,
each core is assigned with a computation-bound application
(libquantum). Simulation results show that in the memory-
bound case, the number of L2 cache access is about 3,400
times more than the computation-bound case. As shown
in Figure 4, memory-bound threads can contend for shared
resource and destructively interfere increasing energy con-
sumption and temperature and degrade reliability.

We compare the Energy-Delay Product (EDP) and the

Figure 4: The effect of application characteristics on
system energy, temperature, and reliability



Figure 5: The effect of scheduling policies on EDP

system reliability yield by the two scheduling policiegs. Fig-
ure 5 shows that in general the Power DI policy yields better
EDP when the fraction of the memory-bound tasks in the
workload is lower. The effectiveness of scheduling policies
differ according to the the number of memory-bound bench-
marks. For example, in Scenario 1, the computation-bound
tasks are allocated to cores differently by the two policies
(Power DI clusters all tasks to the cores in the same socket
while the vector balancing policy spreads the tasks among
all cores). The frequency scaling of the vector balancing
policy is not invoked in this scenario. The Power DI pol-
icy, on the other hand, can save power by switching the idle
cores to a lower power state. Conversely, in Scenario 5 all
the tasks are memory-bound, and the best policy was to
spread them across memory domains so no two tasks would
end up running on the same memory domain. In this sce-
nario, the vector balancing policy improves EDP by saving
energy from frequency scaling while the power saving strat-
egy in the Power DI policy is not invoked. Figure 6 shows
the impact of the two policies on the system reliability. We
assume a serial-parallel failure system, where cores in the
same socket are in series (failure of any one core results in
the socket failure) and the two sockets are in parallel (system
fails when both sockets fail). Results show that the Power
DI policy yields better system reliability when the fraction
of the memory-bound tasks in the workload is lower. In Sce-
nario 1, the Power DI policy clusters all tasks in the same
socket, leaving the cores on the other socket idle, and there-
fore achieves much better reliability. It is worth noting that
when the system topology changes, the impact of scheduling
policies on system reliability will change as well.

6. SUMMARY
In this paper, we have introduced the integration of SST

and gem5. We have enhanced the integrated framework
by adding the Kitten HPC OS to provide a flexible HPC-
oriented OS and fast-forwarding to accelerate the simulation
speed. We have also improved the reliability model in SST.
Experiments have demonstrated that the SST/gem5 inte-
gration is scalable, allowing simulations of many effects that
are only visible at scale, such as load imbalance or system
overheads. We have used the simulation framework to eval-

Figure 6: The effect of scheduling policies on system
reliability

uate two resource-conscious job-scheduling policies. Results
show that although both policies are designed to be energy-
efficient, their effectiveness on energy and reliability depends
on workload and the system topology. Our future work will
use this infrastructure to create novel temperature manage-
ment techniques with consideration of application charac-
teristics to optimize performance, energy consumption, and
reliability of multithreaded multicore systems.

Acknowledgments
Sandia National Laboratories is a multiprogram laboratory operated
by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security Adminis-
tration under contract DE-AC04-94AL85000.

7. REFERENCES
[1] Mantevo Project Home Page.

https://software.sandia.gov/mantevo/.

[2] L.-S. P. Andrew Kahng, Bin Li and K. Samadi. Orion 2.0: A
fast and accurate noc power and area model for early-stage
design space exploration. In Design Automation and Test in
Europe (DATE), April 2009.

[3] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework
for architectural-level power analysis and optimizations. In In
Proceedings of the 27th Annual International Symposium on
Computer Architecture, pages 83–94, 2000.

[4] D. Burger and T. Austin. The simplescalar tool set, version 2.0.
ACM SIGARCH Computer Architecture News, 25(3):13–25,
1997.

[5] M. Giampapa, T. Gooding, T. Inglett, and R. W. Wisniewski.
Experiences with a lightweight supercomputer kernel: Lessons
learned from blue gene’s cnk. In SC ’10: Proceedings of the
International Conference on High-Performance Computing,
Networking, Storage, and Analysis, November 2010.

[6] M. Hsieh. A scalable simulation framework for evaluating
thermal management techniques and the lifetime reliability of
multithreaded multicore systems. In 1st International IEEE
Workshop on Thermal Modeling and Management (TEMM
11), July.

[7] M. Hsieh, R. Riesen, K. Thompson, W. Song, and
A. Rodrigues. Sst: A scalable parallel framework for
architecture-level performance, power, area and thermal
simulation. The Computer Journal, 55:181–191, 2012.

[8] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia,
P. Bridges, A. Gocke, S. Jaconette, M. Levenhagen, and
R. Brightwell. Palacios and kitten: New high performance
operating systems for scalable virtualized and native
supercomputing. In 24th IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2010), April 2010.

[9] M. Lis, P. Ren, M. H. Cho, K. S. Shim, C. W. Fletcher,
O. Khan, and S. Devadas. Scalable, accurate multicore
simulation in the 1000-core era. Performance Analysis of
Systems and Software, IEEE International Symmposium on,
0:175–185, 2011.

[10] R. E. Riesen, K. T. Pedretti, R. Brightwell, B. W. Barrett,
K. D. Underwood, T. B. Hudson, and A. B. Maccabe. The
Portals 4.0 message passing interface. Technical Report
SAND2008-2639, Sandia National Laboratories, April 2008.

[11] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey,
R. Oldfield, M. Weston, R. Risen, J. Cook, P. Rosenfeld,
E. CooperBalls, and B. Jacob. The structural simulation
toolkit. SIGMETRICS Perform. Eval. Rev., 38:37–42, March
2011.

[12] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. Dramsim2.
http://www.ece.umd.edu/dramsim/, July 2010.

[13] Srinivasan et al. Exploiting structural duplication for lifetime
reliability enhancement. In ISCA, pages 520–531, June 2005.

[14] R. Strong, J. Mudigonda, J. C. Mogul, N. Binkert, and
D. Tullsen. Fast switching of threads between cores. ACM
SIGOPS Operating Systems Review, 43:35–45, April 2009.

[15] K. Underwood, M. Levenhagen, and A. Rodrigues. Simulating
red storm: Challenges and successes in building a system
simulation. In Parallel and Distributed Processing
Symposium, 2007. IPDPS 2007. IEEE International, pages
1–10. IEEE, 2007.


